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In this paper the dimensional-analysis approach to wall turbulence of Perry & Abell 
(1977) has been extended in a number of directions. Further recent developments of 
the attached-eddy hypothesis of Townsend (1976) and the model of Perry & Chong 
(1982) are given, for example, the incorporation of a Kolmogoroff (1941) spectral 
region. These previous analyses were applicable only to the ‘wall region’ and are 
extended here to include the whole turbulent region of the flow. The dimensional- 
analysis approach and the detailed physical modelling are consistent with each other 
and with new experimental data presented here. 

1. Introduction 
The study and description of wall-bounded shear flows has been an active and 

challenging field for most of this century. By the end of the 1930s various 
phenomenological theories had been proposed which were aimed mainly towards 
describing the mean flow. These theories were unconvincing and little or no serious 
attempt was made to extend them to include the fluctuating quantities. Izakson 
(1937) and Millikan (1939) then developed a dimensional-analysis approach for the 
mean flow, based on the existence of a ‘region of overlap’ in which two mean-flow 
similarity laws are simultaneously valid, to establish the logarithmic law of the wall 
and laws of skin friction in pipes, ducts and boundary layers. This approach is also 
based on the study of how experimental data collapse when plotted with different 
sets of scaling coordinates. These coordinates are determined from physical con- 
siderations and dimensional analysis. Such an approach has little regard for the 
detailed physical processes involved and relies only on physical assumptions of a 
general nature. However, if successful, it establishes a functional framework for the 
correlation of experimental data and further detailed physical modelling must be 
consistent with this framework. 

The application of this approach to the fluctuating quantities has not met with 
the same success as it has with the mean flow, partly because of the difficulties 
involved in obtaining accurate experimental data. Perry & Abell (1975) applied the 
approach to their broadband streamwise-turbulence data obtained in smooth-walled, 
fully turbulent pipe flow. They postulated an ‘inner-flow ’ and an ‘outer-flow ’ scaling 
law for the $/q distribution (where $ is the mean square of the fluctuating 
streamwise velocity and U, is the mean wall shear velocity) and deduced that q/q 
is a universal constant in the region of overlap, where both laws are simultaneously 
valid. This region coincides with that portion of the boundary layer in which the 
mean-flow logarithmic law of the wall is valid and the Reynolds shear stress can be 
considered to be constant, and will be referred to as the turbulent wall region. 
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In  the light of further work Perry & Abell (1977) revised their ideas. By utilizing 

their streamwise spectral data (measured in the turbulent wall region) and the physics 
of Townsend’s (1976) attached-eddy hypothesis, they proposed certain spectral- 
similarity laws, deduced their analytical form in the spectral regions of overlap and 
from these laws predicted the distribution of $/U: in the turbulent wall region. 

A physical model consistent with the above findings was attempted by Perry & 
Chong (1982), hereinafter referred to as PC. This model was based on the flow- 
visualization results of Head & Bandyopadhyay (1981) and the attached-eddy 
hypothesis of Townsend (1976). They proposed that a wall shear layer is made up 
of a forest of attached hairpin, h-shaped or horseshoe vortices inclined in the 
downstream direction at  approximately 45’ to the wall. Head & Bandyopadhyay 
point out that the eddies maintain this angle for some distance as they are convected 
downstream. Recent work by Smith (1984), Acarlar & Smith (1984), Moin & Kim 
(1985) and Kim (1985) further supports the existence of hairpin vortices in wall 
turbulence. For simplicity, PC confined their attention to h-shaped vortices. 
Beginning with an isolated h-vortex they showed that because of its image in the 
wall the vortex undergoes a stretching process in which the vortex height h increases 
approximately uniformly with time and the distance A between the ‘legs’ of the 
vortex at the wall decreases such that the product Ah remains constant (a plane- 
strain-like motion in the plane of the vortex). They also showed that viscous diffusion 
ultimately dominates the stretching process and proposed that when the legs of the 
h-vortex eventually come together the vortex dies by vorticity cancellation. A 
random array of h-shaped vortices, all a t  different stages of stretching but with the 
same circulation, was called a ‘hierarchy’. They found that, in order to obtain a 
logarithmic mean-velocity distribution, a region of constant Reynolds shear stress 
and the correct u, spectral behaviour in the turbulent wall region, it is necessary to 
assume that a range of scales of geometrically similar hierarchies exist. The simplest 
assumption is that all hierarchies have the same velocity scale ( - U,)f and that their 
lengthscale 6 varies. The probability density function (p.d.f.) of hierarchy scale 6 
follows a geometric progression for a discrete distribution and an inverse power law 
if a continuous distribution is assumed. The lengthscale of the hierarchies vary from 
the smallest scale 6,, which is assumed to be proportional to the Kline et al. (1967) 
scaling (i.e. 6, - v/U,, where v is the kinematic viscosity), to the largest scale A, ,  
which is assumed to scale with the shear-layer thickness. How these hierarchies form 
is a mystery but one possible explanation suggested by PC is vortex pairing: the 
eddies in the smallest hierarchy form from a roll-up of viscous-sublayer material and, 
although most of the eddies in this hierarchy die, some manage to pair to form eddies 
belonging to the next hierarchy; most of the eddies in the next hierarchy die but some 
manage to pair to form eddies belonging to the next hierarchy and so on. PC assumed 
a discrete p.d.f. of hierarchy lengthscales that doubled from one hierarchy to the next, 
and suggested that the effect of ‘ jitter’ or randomness about each discrete hierarchy 
scale gives a continuous inverse-power-law p.d.f. Their proposals are consistent with 
those of Townsend (1976), who effectively replaced each hierarchy with a group of 
identical ‘representative eddies ’ and assumed an inverse-power-law p.d.f. for the 
representative eddy lengthscales in his broadband turbulence-intensity analysis. 
Acarlar & Smith (1984) have shown that the speculated pairing process does in fact 
occur, at least for hairpin-type vortices formed in the region behind rivet heads. 
Whether such pairing occurs in turbulent boundary layers is an open question. 

PC’s model was successful in linking the mean-flow similarity laws with the 

Throughout this paper - means ‘proportional to’ or ‘scales with’. 
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streamwise turbulence spectra and the broadband turbulence-intensity distributions 
in the turbulent wall region. However, no account was taken of the possibility that 
the attached eddies are surrounded by fine-scale isotropic eddies, which gives rise 
to a Kolmogoroff (1941) spectral region, which includes an inertial subrange if the 
Reynolds number of the flow is sufficiently large. Unfortunately, PC used the data 
of Perry & Abell(l977) in which a Kolmogoroff region with an inertial subrange was 
not obvious. Here we present strong experimental support for the existence of such 
a region and attempt to explain its existence and how it fits in with PC’s model. We 
begin in $2 by extending the spectral analysis of Perry & Abell (1977) to three 
dimensions. In $3, the model of PC is improved and extended to include the ‘wake’ 
region (i.e. the region beyond the turbulent wall region). The analysis establishes a 
link between low-wavenumber spectra of motions parallel to the wall in the turbulent 
wall region and the mean-flow deviation from the logarithmic law of the wall in the 
wake region. The outcome is a model which the authors consider to be applicable to 
the whole turbulent region in zero-pressure-gradient boundary layers. With slight 
modifications it should also be applicable in pipe and duct flow. Experimental spectral 
and turbulence data obtained in smooth-walled fully developed pipe flow are 
presented in $4 and these give strong support to the model of wall turbulence 
presented here. 

2. A dimensional-analysis approach to wall turbulence 
We will consider here some examples of turbulent wall-shear flow over a smooth 

surface. Much of the analysis is applicable to a slowly developing turbulent boundary 
layer on a flat wall with zero streamwise pressure gradient, to fully developed 
turbulent flow in a circular pipe and to flow in a high-aspect-ratio rectangular duct. 
Let A ,  be a characteristic lengthscale of the outer part of the shear layer. This would 
scale with the boundary-layer thickness, pipe radius or duct half-width. Let the 
symbol represent the velocity at the edge of the boundary layer, the mean 
velocity at the pipe axis or at the plane of symmetry of the duct. Let z be the 
streamwise coordinate, y the cross-stream distance, z the distance normal to the wall 
and let the corresponding velocity components be U,, U ,  and U,. Overbars will denote 
mean values and lower-case letters will denote fluctuating quantities. 

It is well known that in a region close to the wall, the mean flow follows Prandtl’s - 
law of the wall 

The function f, is universal and independent of the large-scale flow geometry (i.e. 
independent of whether we have boundary layer, pipe or duct flow). For the fully 
turbulent region (i.e. the region of flow beyond the buffer zone) the mean flow follows 
the velocity-defect law - -  

ulE-ul  u, =fa[;]. (2) 

The function f, is universal only for a given large-scale flow geometry. Millikan (1938) 
assumed ‘that there is possibly a small but finite region near the wall in which both 
(1) and (2) are valid . . . ’ and deduced that within the region of overlap 
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by equating the velocity gradients given by (1) and (2). Here K and A are universal 
constants and the constant B is dependent on the large-scale flow geometry. 
Constants dependent on the large-scale flow geometry will henceforth be referred to 
as ‘ large-scale characteristic constants ’. 

It will be assumed that the mean-flow vorticity and the energy-containing 
turbulent motions, which include the Reynolds-shear-stress motions, are caused by 
anisotropic coherent eddies attached to the wall in the sense of Townsend (1976, 
pp. 152-3) and PC. Many definitions for the terms coherent structure or coherent eddy 
exist (see e.g. Hussain 1982). The present authors regard coherent attached eddies as 
having similar recognizable patterns with a fixed angle of inclination relative to the 
wall (i.e. 9 = constant as shown in figure 1)  that recur throughout the flow with a 
range of lengthscales. These coherent eddies are assumed to be surrounded by a fluid 
which contains fine-scale detached eddies. The motions in this surrounding fluid are 
assumed to be statistically isotropic and statistically irrotational. These fine-scale 
eddies contribute little to the broadband turbulence intensities and make no 
contribution to the Reynolds shear stress but are responsible for most of the energy 
dissipation in the flow. They are possibly the remainder of what were once attached 
eddies that have been stretched, distorted and convected away from the near-wall 
region by the more ‘active ’ attached eddies, and are therefore the ‘debris of dead-eddy 
material ’ (see PC regarding eddy death). Many of the above physical assumptions 
are not essential for the following dimensional arguments but are consistent with it 
and will be used in a more detailed physical argument presented in $3. 

The following analysis is applicable only to flow in the turbulent wall region (i.e. 
v/ U, 4 z < A , ) .  Figure 1 shows three different scales of attached eddies together with 
the instantaneous streamline patterns that they generate relative to an observer 
moving with the fluid in the far field of the eddy. These are identical with the 
three-dimensional A-shaped vortices of PC (other eddy geometries are considered 
later). Since we are considering the flow beyond the thin viscous sublayer, we will 
assume that the flow is inviscid with finite slip at the boundary. Also shown in figure 1 
is a probe situated at a distance z from the wall. It is not too difficult to see that 
an eddy of scale S, = O(A,)  will contribute to u, and u2 at the probe location and 
these contributions will be invariant with z for z 4 A, .  This invariance of u1 and of 
u2 with z is meant in the sense that, if we Taylor-series expand u, or u2 with respect 
to z about z = 0 for an eddy of scale S, then, for z 4 S, the zeroth-order term will 
dominate over the higher-order terms; while for u3 the first-order term will dominate. 
It is clear that an eddy of scale 8, will contribute little to us. An eddy of scale 6, = O(z) 
will contribute strongly to u,, u2 and us and these motions will depend on z. Eddies 
of scale 8, 4 z will not contribute to any motions at  z because of the very small far-field 
effect above the eddy (see the BioMavart-law calculations of PC). Thus, only eddies 
of scale 6 = O(z) contribute to u3 motions and all eddies of scale 6 >, O(z) contribute 
to u, and u2 motions at z. 

Let @(,(k,) be the cross-power spectral density per unit streamwise wavenumber 
k, for velocity fluctuations u2 and uj and let this be normalized such that 

joW @&l) dk, = “r? ( 5 )  

where i and j may equal 1, 2 or 3, and repeated indices do not denote a summation. 
Let us consider the distribution of the u1 power-spectral density, @,,(k,), in the 

turbulent wall region and only that range of wavenumbers in which motions are not 
dependent explicitly on viscosity. This would cover most of the energy-containing 
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FIGURE 1. A sketch of three attached eddies of varying scales together with 
the instantaneous streamline pattern generated by each. 

region of the spectrum since the viscosity-dependent motions would occur only at 
very high wavenumbers. Therefore in the energy-containing region the only variables 
involved are U,, k,, z and A ,  (this is in accordance with Townsend’s 1976 
Reynolds-number-similarity hypothesis). At z << A,,  eddies of scale S = O(A, )  will 
contribute only to  the low-wavenumber motions, so a t  these wavenumbers we would 
expect an ‘ outer-flow ’ scaling law of the form 

which from earlier discussions is known to be invariant with z for z << A, .  Here 
Gl1(kl AE)  is the power-spectral density per unit non-dimensional wavenumber k, A,.  
From now on the argument of a spectral function will denote the unit quantity over 
which the energy density is measured. Eddies of scale 6 = O(z) will contribute to 
motions a t  moderate to  high wavenumbers, so a t  these wavenumbers we would expect 
an ‘inner-flow ’ scaling law of the form 

A ,  is not involved in (7) since eddies of that  scale make no contribution to this 
wavenumber range provided that z << A , .  

Let us now consider the very-high-wavenumber viscosity-dependent motions. We 
would expect these motions to  be locally isotropic and the u1 spectra to follow the 
classical Kolmogoroff (1941) viscosity-dependent scaling law 

where 7 = (v3/e):  and u = (~6):.  The quantities 7 and u are the Kolmogoroff length 
and velocity scales respectively, and these depend only on the turbulent-energy 
dissipation e and the kinematic viscosity v. Following Townsend (1961, 1976), a 
reasonable assumption concerning the turbulent wall region is that  turbulent energy 
production p and dissipation are approximately in balance,? i.e. 

t This contradicts the Townsend (1976) attached-eddy hypothesis. I t  is simple to show for flow 
consisting of attached eddies alone that p / e  - z+ in the turbulent wall region. The remainder of 
the dissipation is carried by fine-scale detached eddies surrounding the attached eddies. 
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I n  this region, -- = 
ships i t  can be shown that 

and Clq/az is obtained using (3). From these relation- 

and ?# I=  - .  K-3 
Figure 2 ( a )  summarizes the various u, spectral regions given by (6), ( 7 )  and (8 )  over 

the range of wavenumber k,. Two regions of overlap are anticipated, shown as 
‘overlap region I’ and ‘overlap region 11’. I n  region of overlap I, (6) and ( 7 )  are 
simultaneously valid, i.e. GlI(kl) = z q g 2 ( k l z )  = d, U;g,(k,dE) and therefore 
gl(k,dE)/g2(klz) = z/d,. Hence g1 and g2 must be of inverse-power-law form as 
given below : 

( 1 l a )  

or 

where A ,  is a universal constant. I n  region of overlap 11, ( 7 )  and ( 8 )  are simultaneously 
valid. Substituting (10a) and ( l o b )  into ( 8 )  and comparing this equation with ( 7 )  
shows that v is not explicitly involved. The only functional form that will permit this 
is 

or 

where KO is the universal Kolmogoroff constant. Region of overlap I1 is sometimes 
called the inertial subrange. The functional forms given by (1  1) and (12) are the only 
ones that simultaneously satisfy the two laws applicable in each region of overlap. The 
boundaries of these regions of overlap are indicated in figure 2 (a) .  The constants P,  
N and M are universal constants and F is a large-scale characteristic constant. The 
relationships for these boundaries can be derived from (6), ( 7 ) ,  ( 8 )  and ( l o b ) .  It will 
be shown later that  there is encouraging experimental evidence for the existence of 
these anticipated overlap regions. Equation (1 1) was deduced, using the above 
dimensional argument, by Perry & Abell (1977) .  

The analysis for the u2 motions yields a similar set of relations with an additional 
set of universal constants, some of which can be related to the u1 spectral constants 
in the Kolmogoroff region. For the us motions, one would expect from earlier 
discussions that, no ‘outer-flow ’ scaling law should result, and the various u3 spectral 
regions are shown in figure 2 ( b )  with one region of overlap between an ‘inner-flow ’ 
scaling law and the Kolmogoroff scaling law. Again, the ug spectral constants in the 
Kolmogoroff region can be related to the u1 constants. 

Sketches of the expected u1 spectral distribution plotted with ‘inner-flow ’ and 
‘outer-flow ’-scaling coordinates are shown in figures 3 and 4 respectively. With 
‘inner-flow’ scaling the spectra at low k , z  should peel off’ at k , z  = Fz/A ,  from an 
inverse-power-law region (1 1 a ) ,  and, a t  very high k, z ,  peel off a t  k, z = M ~ - f ( z + ) f  from 
a -5 power law, (12b). Here z+ = zU,/v. With ‘outer-flow’ scaling the spectrum of 
the low-wavenumber motions, which are non-universal as regards to ‘ inner-flow ’ 
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Motions that are independent of viscosity 

(i.e. Townsend‘s Reynolds-number-similarity hypothesis) r - -- @ d k l  7) - h3(kl 7) -- 
lJ= 

(Kolmogoroff scaling) 

(‘Inner-flow ’ scaling) 

FIGURE 2. A summary of the various spectral regions for velocity fluctuations in the 
turbulent wall region. (a) u1 spectra. ( b )  us spectra.. 

scaling, should collapse to a universal region at low k, A, .  At high k, A ,  the spectra 
should peel off at k, A, = PA,/% from the inverse-power-law distribution. Figures 5 
and 6 show the expected u3 spectral distribution plotted with ‘inner-flow’- and 
‘ outer-flow ’-scaling coordinates respectively. With ‘ inner-flow ’ scaling the u3 spectra 
at low to high k , z  should collapse to a universal region, which at high k , z  follows 
a -f power law from which the spectra peel off at k, z = M d ( z + ) f .  ‘ Pre-multiplied’ 
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M(z+)f 

I 
I 

log P log N 
log (kl z)  log ( k ,  z )  

(4 (b) 

FIQURE 3. Sketches of the expected distributions of ( a )  u1 spectra and ( 6 )  pre-multiplied u1 spectra 
when scaled with ‘inner-flow’-scaling coordinates for varying values of z / A ,  and z+ within the 
turbulent wall region. 

spectra are also shown in the figures on semi-logarithmic plots ; such plots conveniently 
show the non-dimensional energy contribution over any wavenumber range as an area 
under the curve. 

Returning to the u1 spectra, the broadband turbulence intensities can be found by 
integrating over the various spectral regions. With reference to figure 2 ( a )  we have 

In (13) the first integral equals a large-scale characteristic constant; the second is 
evaluated using (1 1 a )  ; the third equals a universal constant ; the fourth is evaluated 
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FIGURE 5. Sketches of the expected distributions of (a) u3 spectra and ( b )  pre-multiplied 
u3 spectra when scaled with ' inner-flow '-scaling coordinates. 

FIQURE 6. Sketches of the expected distributions of (a) u3 spectra and ( b )  pre-multiplied 
u3 spectra when scaled with 'outer-flow '-scaling coordinates. 

using (12b)  and the energy contribution from the last term is assumed to be negligible. 
This yields 

(14) 
U2 
2 = &-A, In - -C(z+)-i, 

where A,  and Care universal constants and B, is a large-scale characteristic constant. 
Similarly, for the u2 motions, 

- 

v [id 

where A,  is a universal constant and B, is a large-scale characteristic constant ; while 

- for the u, motions 
U2 
3 = A,  -ic(z+)-i, v 
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where A, is a universal constant. It should be noted that C occurs in all of the above 
equations and the factor { appears from the theory of isotropic turbulence applied 
to the amplitudes of @,,, GZ2 and @33 in the inertial subrange when expressed in terms 
of the streamwise wavenumber k, (see Townsend 1976, p. 93; Batchelor 1956). 
Equations (14), (15) and (16) are valid provided v / U ,  4 z 4 A,, and in the limit as 
z+-+ m the equations reduce to those arrived a t  by Townsend (1976) who used 
broadband-turbulence-intensity arguments and neglected the fine-scale motions 
describable by (8). 

3. A more detailed physical model for wall turbulence 
3.1. Mean-flow distribution 

Much of what follows is based on Townsend's (1976) attached eddy hypothesis and 
the model of PC. Consider a representative eddy of scale S similar to those shown 
in figure 1 with a characteristic velocity scale U,. Let an array of these eddies 
distributed randomly in the (z, y)-plane, with average streamwise and cross-stream 
spacings which scale with S, be representative of a hierarchy of scale 6, and let the 
contribution that this hierarchy makes to the mean cross-stream vorticity at a 
distance z from the wall be cH. From dimensional analysis it can be shown that 

5 H  = ?.f(;). 

Then the mean cross-stream vorticity at a fixed z for a range of geometrically similar 
hierarchies varying in scale from 6, to A, is 

where pH(&) is the p.d.f. of hierarchy scales. Townsend (1976) assumed pH(B)  to be 
continuous and of the form 

(19) 
JtY 

pH(S) = S! 

since this and the previous assumptions lead to a region of constant Reynolds shear 
stress for S, 4 z 4 A,. Here A is a disposable universal constant. Using (17), (18) 
and (19) we obtain 

(20) 

- -  
where U g  = ( UIE- U,)/U, ,  the non-dimensional mean-velocity defect. Also, 

h = In (J/z); A ,  = In ( S , / Z ) ;  A ,  = In (dE/z) and h(A) =f(z/S). 

It can be shown that 

By assuming that all the vorticity is confined to the vortex loop and that the 
surrounding fluid is irrotational, PC were able to relate various forms of h(A) orf(z/S) 
to the representative eddy geometry. We shall now examine various forms of h(h) 
and compare the resulting Ug distributions with the Hama (1956) velocity-defect-law 
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distribution in a zero-pressure-gradient turbulent boundary layer on a flat plate. This 
empirical law in terms of our logarithmic variables is 

where the constants K and D are 9.6 and 2.309 respectively. Alternatively, we could 
have used the Coles (1956) ‘law-of-the-wall ’ and ‘law-of-the-wake ’ formulation to 
generate the velocity-defect law. Equation (22) is shown as one of the curves plotted 
in figure 8. 

Figure 7 shows ‘representative eddies’ of various geometries and their f(z/8) and 
h(A) e-A distributions, and their resulting Ug distributions are shown in figure 8. All 
cases shown lead to the expected logarithmic distribution in U s  for A, sufficiently 
large. The constant A in (19), (20) and (21) is evaluated using the condition 
(dU;S/dAE)-+ 1 / ~  for A, $ 0  and A, < 0. Case (a), a A -shaped vortex, where all the 
cross-stream vorticity is confined to the top of the vortex loop, gives a logarithmic 
distribution through the layer and its intercept is zero at A ,  = 0. Case ( b ) ,  a h-shaped 
vortex, where the cross-stream vorticity is distributed uniformly over the height of 
the eddy, gives a negative intercept for the logarithmic distribution at A, = 0. 

If we equate dzUg/dAk determined from (20) and (22), it is possible to find the 
appropriate h(A) or f(z/8) which yields the Hama distribution in the region 
0 < A, < -In (0.15). This gives the ‘bow-legged’ parabolic eddy shown in figure 7 (c). 
This eddy geometry seems unlikely. 

To consider that a hierarchy can be represented by a single realizable eddy is a 
simplification. Rather, in accordance with PC, it would be more realistic to regard 
a hierarchy as consisting of an assemblage of eddies at  different stages of stretching 
as shown in figure 7 ( d ,  e ) .  Case (d )  shows a h-vortex undergoing a plane-strain-like 
motion, as was indicated by the Biot-Savart-law calculations of PC. The eddy starts 
at  a height b8 and is stretched to a height 8, where it either pairs with another similar 
eddy to form the shortest eddy ofthe next hierarchy or viscous diffusion and vorticity 
cancellation causes eddy ‘death ’. Case ( e )  shows an assemblage of n-shaped vortices 
at  different stages of stretching. The U;E distributions for these two cases for b = 0.5 
are also shown in figure 8. For each case we obtain the correct logarithmic distribution 
for A, large, but the extrapolated intercept is still negative. From a study of 
experimental spectra (presented in 54.2.1) the authors propose that, instead of 
varying the eddy geometry, the inverse-power-law p.d.f. should be modified by 
increasing the weighting for the large-scale eddies, as shown in figure 9(a). The 
large-scale eddies need not be geometrically similar to the smaller-scale attached 
eddies, which are responsible for the logarithmic mean-velocity distribution in the 
turbulent wall region. However, as a first approximation, it will be assumed here that 
the large-scale eddies with this additional weighting are geometrically similar to the 
smaller-scale ones. The type of modification shown in figure 9 (a)  will give the correct 
type of behaviour for the Hama velocity-defect-law formulation (i.e. a positive 
extrapolated intercept). A simplified modification is shown in figure 9 ( b )  and this is 
equivalent to multiplying the inverse-power-law p.d.f. with a weighting function 
W(d/d,), shown in figure 9(c), such that 
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FIQURE 7. Projections in the (y, 2)-plane of various representative eddy geometries together with 
their &/a) and h(A) e-* distributions. (a) n -eddy; ( b )  A-eddy; (c) bow-legged, parabolic eddy; 
( d )  stretched A-eddy; (e) stretched n-eddy. 
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FIGURE 8. The resulting U: distributions for each of the representative eddy geometries shown in 
figure 7 compared with the Hama (1954) velocity-defect-law formulation. Caae (f) is for a stretched 
n -eddy with a weighting function (a = 4.586, d = 0.588 and b = 0.263). 
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FIGURE 9. (a) The type of modification to pH(S)  needed to obtain the Hama (1954) velocity-defect 
law. ( b )  A simplified modification. (c) The corresponding weighting function, W(S/d,). (d) 
w(A-AE) = W(S/d,). 
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Figure 9 (d) shows this function with logarithmic variables, where 
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w(h-AE) = w(S/dE). 

With this modification (20) becomes 

- - A h ( A )  eVn w ( A  -AE) dh. :? - 5:;: 
This is an integral equation similar to  those used for solving inverse-scattering 
problems. Given dUg/dA, and w(A-A,), the problem is to  determine h(A). However, 
since the precise form of w(A-A,) is unknown, we must resort to trial and error. 
Figure 10 shows how the integral in (24) is carried out for trial distributions of h(A) ePh 
and w(A-A,). The shaded area equals dUg/dA, and the width of the integration 
window, A, - A,, is fixed for a given Reynolds number since A, - A, = In ( A  , U J v )  + &, 
where & is a universal constant. I n  (24) we must ensure that A, < 0, since, as PC 
indicated, a special formulation is needed for the smallest hierarchy to include the 
additional non-geometrically-similar eddies forming from the roll-up of viscous 
sublayer material. For simplicity consider the case of an assemblage of stretched 
fl -eddies as shown in figure 7(e). Values of a = 4.568 and d = 0.588 (defined in 
figure 9) and b = 0.263 give a U;S distribution which fits the Hama formulation 
reasonably well as seen in figure 8. This modification of the p.d.f. by a weighting 
function has important implications in spectra and broadband turbulence intensities 
as outlined in the following sections. 

3.2. Turbulence spectra 
Let the power-spectral density of ui velocity fluctuations, area-averaged in a plane 
at a distance z from the wall, for a hierarchy of scale S be &(k, z, z /S) .  This will be 
called the hierarchy spectral function. Then, the summed power-spectral density a t  
a fixed z for a range of hierarchy scales varying from 8, to  A ,  is given by 

To be consistent with the mean-flow work in $3.1, we shall assume that p H ( S )  is given 
by (23). Then pre-multiplying (25) by k ,  z enables this equation to be written in terms 
of our logarithmic arguments, thus 

where a = In ( k ,  S), a, = In (k, z ) ,  = k, Z @ ~ ~ / V  and @ii = k, z&. We shall call Pti 
the pre-multiplied hierarchy spectral function. I n  (26) we are integrating with respect 
to 6 with all other parameters fixed, in particular k, z. 

The functions $ii have been calculated for a hierarchy consisting of a random array 
(in the (z, y)-plane) of A-shaped vortices of the same scale. For simplicity the effect 
of stretching, as illustrated in figure 7(d, e ) ,  has not been included. Figure 11 shows 
the proportions of the A-vortex used together with the image vortex. The vorticity 
distribution in the vortex rods is assumed to  be Gaussian (see PC, $2) with a 
characteristic lengthscale ro = 0.108. The function was computed by taking fast 
Fourier transforms of ui velocity distributions, induced by one isolated A-vortex 
and its image, along lines of constant y/S in a plane of constant 2/13. The velocity 
distributions were calculated using the Biot-Savart law. The power-spectral density 
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FIGURE 10. The evaluation of equation (24). 

I "  / /-' 

FIQURE 11. -vortex geometry used to calculate @4t/ q. 

for a random array of such vortices was formed by ensemble averaging the square 
of the moduli of the fast Fourier transform of the velocity signatures in the plane 
z / S  = constant for various y/6, assuming that the mean streamwise and cross-stream 
densities of these vortices scale with 6. This result was pre-multiplied by k, z to give 
+$$. Sketches of the distributions of @ll/q, $22/q and $'33/q are presented in the 
form of ' contour maps' in figure 12 (a-c), respectively. It can be seen that the contours 
of $11 and +22 are similar and considerably different from the $33 contours. For A 
sufficiently large (i.e. z/d+O), the $11 and @22 contours run parallel to the /\-axis and 
are thus invariant with h in this region, while the $33 contours asymptote to zero; 
as long as the Townsend boundary condition (that at z = 0, u3 = 0 while u, and u2 
remain finite) is upheld, the contours will behave in the manner described for h large, 
no matter what shape of eddy or assemblage of eddies is used to represent a hierarchy. 
For h sufficiently negative, all contours asymptote to zero, since the far-field effect 
of the vortices in the hierarchy vanishes for z + 6. 
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FIGURE 12. Sketches of the contours of @&,h)/U:.  (a) @JV; ( b )  @22/V; ( c )  @33/U:. 
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In these figures, lines of constant k, z are given by 

A = a-a,, 
i.e. lines of slope + 1 with an intercept of a, on the u-axis. Imagine a plane perpen- 
dicular to the ( A ,  a)-plane and aligned along the line of constant k,  z. This will cut 
through the spectral ‘hill ’ $it(cx, A)/U: and a projection of this cut is made onto the 
($$JT, A )  plane. Then weighting this projection with A w ( A - A , )  and integrating 
between A, and A, gives the summed non-dimensional energy-density contribution 
to 4% at a fixed k, z (i.e. fixed a,) for a fixed value of A, (i.e. fixed z / A , ) .  This is shown 
clearly in figure 13(a). In what follows, A, will be taken to be sufficiently negative 
and hence (26) becomes independent of A,. Let a, vary from - 00 to +a with A, 
fixed. Thus &(a,, AE) can be mapped out for various values of A,. Such a plot would 
correspond to ‘inner-flow ’ scaling of the pre-multiplied spectrum of ui velocity 
fluctuations. The resulting distributions of F,, and F2, are similar to the distribution 
of k , z @ , , ( k , z ) / ~  shown in figure 3(b) and the distribution of F33 is similar to the 
distribution of k, z@33(k, z ) / q  shown in figure 5 (b)  ; however, no Kolmogoroff region 
exists nor does a viscous cutoff occur. Instead, at high k , z ,  F,,, 4, and F33 each 
collapse to their universal curve which extends to infinite k, z. 

In figure 12, lines of constant k, z also correspond to lines of constant k, A, .  If 
we let 01, = ln(k,AE), then the ‘outer-flow’-scaling plots of the pre-multiplied 
spectra, Hii(aE, A,) = k, A ,  Gir(k, A,)/U;;,  can be obtained. The distributions of H,,  
and H,, are similar to the distribution of k, A ,  djii(kl/AE)/T shown in figure 4 ( b )  and 
the distribution of H33 is similar to the distribution of k,AE @ 3 3 ( k l A E ) / q  shown in 
figure 6 ( b ) .  

Figures 13 (a ) ,  ( b )  respectively show a comparison between $,,/T for the present 
example of a A-vortex with its image and for the example used by PC. PC were 
interested only in the u1 spectra and used an infinite straight-line vortex of some fixed 
orientation to generate the velocity signatures via the BioeSavart law. Such a model 
does not have the correct boundary conditions for the u3 velocity fluctuations, 
whereas the h-vortex with its image does. PC also assumed that $,,/U: dropped 
suddenly to zero, for z exceeding S, as shown in figure 13 ( b ) .  The problem of an isolated 
vortex having infinite kinetic energy spread over the entire flow field at a fixed value 
of z was overcome by the use of an artificial outer limit on the integral used for 
obtaining the ensemble-averaged power-spectral density. In the case of the A-vortex 
model, this problem does not arise since it has finite energy. Also, instead of using 
a continuous inverse-power-law p.d.f., PC used a discrete p.d.f. where the hierarchy 
scales went in a geometric progression with a factor of 2. This was thought to be 
consistent with vortex pairing, where the lengthscales and the circulation doubled 
from one hierarchy to the next. It will be seen later that the use of a continuous 
inverse-law p.d.f. gives much the same answer. Hence we could equally well use a 
geometric progression with a factor of 2lIr, where r is a resolution factor. The above 
approach is equivalent to multiplying the integrand in (26) by a series of uniformly 
spaced unit Dirac delta functions, which changes the integral into a summation. This 
is equivalent to using a trapezoidal rule. In spite of the crudity of the PC analysis, 
the results produced are remarkably similar to those of the more-refined analysis 
presented here and are found to be insensitive to r provided r 2 1 .  The PC analysis 
for u1 spectra with a discrete p.d.f. with a resolution factor r will be used in the 
analysis given in later sections because of its analytical simplicity. 
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(b) 

FIGURE 13. (a) The distribution of @ll(a, A) /u ;L  computed for the A-vortex case shown in 
figure 11.  (a) The distribution of @ll(a,A)/q for the model of Perry BE Chong (1982). 
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3.3. Turbulence intensities 

Following Townsend (1976) and PC, the broadband turbulence-intensity distribution 
for a range of scales of geometrically similar hierarchies is given by 

where I t j ( z /S )  is the Townsend eddy-intensity function for a hierarchy of scale 6. The 
boundary conditions mentioned earlier given I,, and I,, constant and finite for 
z/S+O, I,, - ( z / S )  and I,, - ( Z / S ) ~ .  Townsend also assumed that, for z B 6, I i3(z /S)  
asymptotes to zero. Typical distributions of I i j ( z / S )  shown in figure 14 highlight these 
functional properties. 

Following the previous mean-flow and spectral analyses ($83.1 and 3.2), it will be 
assumed that pH(S) is given by (23). Then (27) can be rewritten in the form 

where the argument of the eddy-intensity function has been changed to A. I&) can 
be calculated from the pre-multiplied spectral hierarchy function $i3/ q using 

Figure 15(a, b)  shows Ill(A) and 133(A) calculated from $$,/q obtained for the 
h-vortex model used in $3.2. The distribution of I,,@) will be similar to that for 

],,(A), in that they are both finite and constant for A B 0, and the distribution of 
II3(A) will be similar to I,,(A), in that they both have finite area. Also shown in the 
figure is a weighting function w(A-A,). It can be seen from figure 15(a, b )  and the 
above comments that, for A ,  sufficiently large and A, sufficiently less that zero, (28) 
must lead to 

- 
U2 

= A,A,+B, ,  e 
- 
U2 
3 = A,, v 

A,, A,, A,  and K13 are universal constants. In fact, it  can be shown that 

A ,  = AIll 

A,  = MIz2 

( z / S  = 0) ,  

( z / S  = 0) ,  

A,  = JOfflJlI3,(A) dA, 

K,, = ~ o f f l d I 1 3 ( A )  dA = - 1, 
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FIGURE 14. Typical eddy-intensity functions. (a) Ill(z/8) ; ( b )  Z13(z/8) ; ( c )  Z3&/8), 

In  (29), B, and B, are large-scale characteristic constants which depend on the form of 
w(h-A,). The equations listed in (29) are the result obtained by Townsend (1976) 
and by PC, and are the same as (14), (15) and (16) using the dimensional-analysis 
arguments given in $2 if the fine-scale motions are neglected or if z++ 00. 

The analysis presented in this detailed physical model of wall turbulence is 
applicable only to flat-plate flow with a zero streamwise pressure gradient. Fully 
developed flow in ducts and pipes would have the complicating feature of eddies 
intruding from the opposite boundary, and in a pipe curvature effects would also 
influence the large-scale motions. However, as indicated in the dimensional-analysis 
arguments given earlier, the preceding analysis should be applicable in the turbulent 
wall region in pipes and ducts. This is substantiated experimentally for pipes in the 
next section. Much of the difference between the various flow geometries can be 
accounted for by an appropriate modification to  the weighting function w(h - h E ) .  
This in turn will control the values of the large-scale characteristic constants given 
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(b) 

FIGURE 15. Distributions of (a)  Ill(A) and (b)  Iaa(A)  calculated from the computed distributions 
of @ll/q and @aa/q for the A-vortex shown in figure 11. 

in $2 and the distribution of low-wavenumber energy of the u1 and u2 spectra. 
Furthermore, it is argued that, although there will be detailed differences between the 
geometries for flow beyond the turbulent wall region, the general form of the scaling 
laws will still be applicable to all flow geometries. 

4. Experimental results 
4.1. Apparatus and method 

The results presented here were obtained in fully developed, turbulent flow in a 
smooth-walled circular pipe. The pipe consisted of seven 6 m lengths of precision- 
drawn brass tubing of 0.099 m internal diameter. Adjacent lengths were joined using 
specially machined collars which ensured that the surface discontinuities at  the joints 
were minimal. The contraction used is described in Perry & Abell (1975) and a 
sandpaper trip was used after the contraction to stabilize the transition of the flow 
to turbulence. 

All measurements were taken 398.5 diameters downstream from the pipe entrance 
and hopefully this ensured that the flow was fully developed. The flow was examined 
over the range of Reynolds numbers (Re = 2 d , q , / v )  of 75000 to 200000, which 
corresponded to a Karman-number ( A E  U J v )  range of 1610 to 3900. The wall-shear 
velocity U, was determined from the static-pressure drop per unit length along the 
pipe. All measurements, including the hot-wire results, were corrected for the 
effect of the density variation of the air along the length of the pipe. 
Temperature corrections were not necessary. 

Turbulence measurements were obtained using constant-temperature hot-wire 
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anemometers similar to those used by Perry & Morrison (1971). The hot-wire 
filaments were made from 5 pm Wollaston wire and had nominal etched lengths of 
0.90 mm. The wires were calibrated dynamically by following the method outlined in 
88.6 of Perry (1982). The dynamic calibration facility used enabled the wires to  be 
calibrated inside the pipe at the test section. During calibration the wires were 
exposed to a turbulent free uniform stream by removing the length of the pipe 
upstream from the test section and replacing i t  with a contraction with screens. The 
dynamic calibration facility contained the traversing mechanism and this ensured 
that the orientation of the wires during calibration was the same as that during 
measurement. 

The u1 spectra were measured using uncalibrated normal wires and u3 spectra using 
dynamically matched, uncalibrated X-wires. The power-spectral density of the 
pertinent anemometer signal was calculated digitally using a FFT algorithm. The 
signal was low-pass filtered at half the digital sampling rate (using Krohn-Hite 
analog filters model number 3323) to  ensure that no aliasing of the measured 
spectrum occurred. The ensemble average of ten such power-spectral densities gave 
sufficient convergence of the spectrum after a ‘smoothing window ’ had been applied. 
The ha1 spectrum covered a frequency range from 2 to  10 kHz. The argument of 
the spectrum was transformed from circular frequency to streamwise wavenumber 
by applying Taylor’s (1938) hypothesis of frozen turbulence and assuming that all 
eddies moved at a convection velocity equal to the local mean velocity a t  the 
measuring point. Zaman & Hussain (1981) from their investigation of the applicability 
of the Taylor hypothesis were led to state that  ‘the use of the local time-average 
velocity in shear flows especially in the computation of wavenumber spectra and the 
eduction of large scale structures is not acceptable’. The applicability of this 
hypothesis is investigated further in $4.2.1. All spectra were normalized using (5) and 
it was assumed for the purposes of normalization that a t  low wavenumbers the 
measured spectrum could be extrapolated with @(&k1) constant and a t  high wave- 
numbers with Qii(k1)  cc k ~ ~ .  

I n  the turbulent wall region, the turbulent energy dissipation E was calculated using 
(3), (9) and that for a pipe 

In the wake region, the assumption that production is in balance with dissipation 
is no longer valid, so i t  was necessary to resort to  

8 = 15v kt @ll(kl) dk,, r 
which assumes isotropy of the dissipating motions. It can be shown that (32) leads 
to large errors in the value of E if 7 < 8 ,  where 8 is the smallest-scale motion that 
the hot-wire(s) can resolve. 

4.2. Experimental turbulence spectra 

4.2.1. The turbulent wall regioni 

(i) u1 spectra. Spectra of u1 velocity fluctuations measured in the turbulent wall 
region are shown in figure 16(a) with ‘inner-flow ’-scaling coordinates for various 
values of z / A E  for normal wires of lengths 1 = 0.39 and 1.26 mm. The data appear 

t For a pipe the turbulent wall region is tentatively defined here as 140v/U, < z < 0.144,. 



Theoretical and experimental study of wall turbulence 185 

1 0  

10' 

10' 

@ll(klZ) 
u: 

100 

10-1 

10-2 

10- 

=+ 5571 

I I I I 

10-2 10-1 1 00 10' 

klZ 

1 0 2  

10' 

100 

10-1 

lo-' 

I 0-J 

0-4 

108 I I I I 10' 
- 

10' - loo - 

100 - 
@ll(kl 

u: 
10-1 - 

lo-' - 

10- - 

0 14 

I I I I I 0-4 10-6 
lo-= 10-1 1 00 10' I 0' 1 03 

klA E 

FIGURE 16. (a) u1 spectra scaled with 'inner-flow '-scaling coordinates for varying values 
within the turbulent wall region. Re = 200000. ( b )  The same scaled with 'outer-flow 
coordinates. 
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to be consistent with the expected distributions shown in figure 3(a). The data are 
shown scaled with ‘outer-flow’-scaling coordinates in figure 16(b) and appear to be 
consistent with the expected distribution shown in figure 4 (a ) .  

Let us now examine the behaviour of the high-wavenumber peel-off of the spectra 
from the -5-power-law distribution in figure 16 (a) .  Earlier, we showed that the value 
a t  which the spectra peel off from the -5 power law owing to the effects of viscosity 
is expected to follow 

M 
k ,  z = 7 (2,):. 

Kd 
(33) 

For u1 spectra measured using a normal wire of length 1 the peel-off from the -$  
law may be caused by the spatial-resolution limit of the probe rather than by the 
effects of viscosity. Such a peel-off is expected to  follow 

(34) 

because Wyngaard (1 968) has shown that the highest wavenumber resolvable by a 
wire of length I is given by k ,  = O(l/l). 

Let ( k , ~ ) ~  be the experimentally determined peel-off point. This point can be 
calculated using the method illustrated in figures 17 (a ,  b).  Figure 17 ( c )  shows a plot 
of log(k,z), versus log(z+) determined from u, spectra measured at the same 
Reynolds number with wires of different length. Provided that z / l  is sufficiently large 
the data appear to follow a line of slope + 9 .  However, as z decreases the data appear 
to fall closer to the line of slope + 1. It can be seen that, with the use of shorter wires, 
evidence for the peel-off following (33) becomes more substantial. By extrapolating 
the data in figure 17 ( c )  to zero wire length, we obtain an estimate M = 0.085. When 
the data shown in figure 16(a) are scaled with Kolmogoroff coordinates the extent 
of the inertial subrange was greater for the spectra measured with the 0.39 mm wires 
than that measured with 1.26 mm wires. Thus spatial resolution is a problem 
whenever we are attempting to verify the existence of a Kolmogoroff region in 
laboratory-produced flows. PC in their interpretation of the data of Perry & Abell 
(1977) came to the conclusion that no Kolmogoroff region existed and that the spectra 
could be explained solely in terms of attached coherent motions. 

Let us examine the behaviour of the spectrum at low wavenumbers. In  figure 
16 (a ,  b )  a small deviation above the inverse-power-law distribution is apparent at low 
wavenumbers in each spectrum. It was seen earlier that  such deviations can be 
accounted for by the inclusion of a weighting function W ( d / A , ) .  This deviation is more 
apparent in the pre-multiplied spectra scaled with ‘ outer-flow ’-scaling coordinates 
as shown in figure 18(a). A simulation was carried out to determine what effect the 
inclusion of such a weighting function has on the predicted u1 spectral distribution. 
For simplicity, this simulation used PC’s spectral model, a discrete p.d.f. of hierarchy 
scales with a resolution factor r of 4, and the weighting function conjectured to be 
appropriate for a pipe is given in figure 9 ( c )  with a = d = 2.0. Curve (i) in figure 18 (b)  
shows the spectral prediction without the inclusion of the weighting function and 
curve (ii) that  with the inclusion of the weighting function for a value z / A E  
comparable with the values of z / A ,  for the data shown in figure 18(a) .  A similar 
deviation at low wavenumbers is apparent in the streamwise spectral data of Perry 
& Abell(l975) in their figure 1 1 (a ) ,  of figure 6 ( a )  for y +  = 215 of Bremhorst & Walker 
(1976), and of figure 11 for y+ = 200 and 500 of Bullock, Cooper & Abernsthy (1978). 
All of these spectra were measured in the turbulent wall region. Recently, a colleague 

Z 
klZ * - 

1 ’  
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FIGURE 17. (a, b )  The method used for determining ( k , ~ ) ~ .  (c) Values of log,, (k , z ) ,  versus 
log,, (z+) obtained from u, spectra measured with normal wires of differing etched lengths 2. 

K. L. Lim (private communication, 1984) has obtained u, spectral data for flow over 
a smooth flat plate with a zero streamwise pressure gradient. A typical result is shown 
in figure 18(c) and it shows a similar deviation but with a value of a of about 3.5. 
Curve (iii) in figure 18 (b) shows the predicted spectral result for a = 3.5. This value 
of a roughly corresponds to the value needed to obtain the Hama velocity-defect-law 
formulation using stretched fl-eddies (see $3.1). 

The incomplete collapse of the data at low k, A ,  in figure 16 (b) may be due to the 
invalid use of Taylor's (1938) hypothesis, which utilizes one single convection velocity 
for all eddy scales at  a fixed point in the flow. It is suspected that the larger-scale 
coherent attached eddies are convected downstream at a faster rate than the 
smaller-scale coherent eddies; hence there is a spread in convection velocities for a 
given wavenumber (e.g. see Wills 1964, who studied jets). A crude simulation was 
carried out to see whether this lack of collapse of the data could be explained by 
a spread in the convection velocity of the coherent attached eddies. The predicted 
u1 spectral distribution from the model shown as curve (ii) in figure 18(b) is 
reproduced as the heavy curve in figure 19. This was calculated by Fourier- 
decomposing the spatial variation in velocity for each representative eddy or 
hierarchy (giving the wavenumber directly) and is therefore independent of the 
convection velocity of the eddies. This we will regard as the true spectrum. To 

I PLM 165 
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FIGURE 18. (a) Figure 16(b) presented as a pre-multiplied u1 spectrum. (a) Computed pre-multiplied 
u1 spectra using (i) no weighting function, (ii) weighting for a pipe and (iii) weighting function for 
a boundary layer (a = 3.5). (c) pre-multiplied u1 spectra measured in a turbulent boundary layer, 
z/AE = 0.0296, K A , / v  = 130700, Lim (1984). 
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FIGURE 19. The effect of including a spread in convection velocities of the A-shaped eddies on the 
computed frequency spectrum which has been converted to wavenumber spectra using Taylor's 
(1938) hypothesis. 



Theoretical and experimental study of wall turbulence 189 

illustrate the effect of a spread in convection velocities of the eddies, this spectrum was 
recalculated as follows: i t  was assumed that the convection velocity for a hierarchy 
of scale 6 is invariant with z and equal to the local mean velocity at z = calculated 
using (3) ; the frequency spectrum as seen by a stationary probe at a distance z from 
the wall was then calculated and the argument of this spectrum converted from 
frequency to wavenumber using Taylor’s hypothesis with a single convection velocity 
equal to the local mean velocity at z calculated using (3). The result is shown by the 
dotted line in figure 19. It can be seen that the low-wavenumber bump or deviation 
has been attenuated and the suggestion of another bump at high wavenumbers is 
apparent. This curve bears a strong resemblance to that of the data of Perry & Abell 
(1975) mentioned earlier. The low-wavenumber shift seen in figure 19 can be shown 
to vary with z / A E  and the variation, though not as large, is consistent with that of 
the data shown in figure 16 ( b )  and 18 (a). Hence the invalid use of Taylor’s hypothesis 
has a measurable effect and prevents the data when plotted with outer-flow-scaling 
coordinates from collapsing at low wavenumbers. 

(ii) u3 spectra. The u3 spectra measured in the turbulent wall region are shown in 
figure 20 with ‘inner-flow’-scaling coordinates for varying values of z / A E  a t  six 
different Reynolds numbers. The data at  low and moderate k,  z correlate reasonably 
with the expected distribution shown in figure 5(a ) .  More importantly, there is no 
inverse-power-law region and no systematic peel-off of the spectra at low k , z  as is 
characteristic for the u1 spectra (see figure 16a). This fact alone lends strong support 
for the Townsend attached-eddy hypothesis and the model of PC. The slight spread 
in the u3 spectra at  low k ,  z cannot be explained by a spread in convection velocity 
of the eddy scales, since a probe sensitive only to us motions only ‘sees’ eddies of 
scale 6 = O(z) .  The authors contend that this spread may be caused by cross- 
contamination of the X-wires from the u2 motions. This will occur if the X-wires are 
rolled about the streamwise axis or if the hot-wire filaments are bowed. In figure 20 
no inertial subrange is observed and the peel-offs at high k ,  z depend upon z / A E  and 
not z+; since the corresponding u1 spectra (which were measured using normal wires) 
showed a distinct inertial subrange, we suspect that the spatial-resolution limit of 
the X-wires may dominate the form of the spectrum in this region. If this were the 
case, the data when scaled with ‘outer-flow ’-scaling coordinates should collapse at 
high k, A,, since for these experiments the X-wire geometry and scale was fixed. Hence 
the resolution limit of the probe happened to scale with A ,  since l / A E  is fixed. This 
is confirmed in figure 21, where the data are presented with ‘outer-flow’-scaling 
coordinates. The spread in the data a t  low k ,  A ,  with z/AE has increased significantly 
and this is in agreement with the spectral proposal shown in figure 6(a). 

4.2.2. The fully turbulent region 

Here we will discuss the spectra which occur over the entire fully turbulent region, 
which extends from the outer limit of the buffer zone to the pipe centreline. According 
to the Townsend Reynolds-number-similarity hypothesis, the spectrum of the 
energy-containing components of the ui velocity fluctuations in this region should 
follow 

where i = 1, 2 or 3 and qi is independent of viscosity. At  high wavenumbers a 
Kolmogoroff region should exist and provided that the Reynolds number of the flow 
is sufficiently large this should include an inertial subrange. Of course this region can 
only be derived from dimensional analysis and not from the attached-eddy model. 

7-2 
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FIGUBE 20. us spectra scaled with 'inner-flow '-scaling coordinates for varying values of % / A ,  within 
the turbulent wall region and for six Reynolds numbers equally spaced from 75000 to 200000. 
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FIGURE 21. ua spectra shown in figure 20 scaled with 'outer-flow '-scaling coordinates. 

(i) u1 spectra. The u1 spectra for six different Reynolds numbers, ranging from 
75000 to 200000, are presented in figure 22(a-f). In each figure the wall distance 
varies from the pipe centreline (z/dE = 1.0) to a value of z/dE close to the outer limit 
of the buffer zone. Figure 24(a) shows a superimposed selection of data from 
figure 22(a-f) and it is seen that (35) is applicable in the energy-containing region, 
at least for the rarige of Reynolds numbers examined here. A t  a fixed z/dE, the slight 
spread in the spectra at  low k l z  with Re is thought to be due to a change in the 
fractional spread of the convection velocities of the eddies as Re changes (see Perry 
& Abell 1977). 

That part of the u1 spectral results that can be described by (35) are similar to those 
predicted by PC, i.e. for the coherent attached eddies. Spectral distributions have 
also been computed using the method detailed in $3.2 for a A-vortex without the 
use of a weighting function. A Kolmogoroff region is not included in these calculations. 
These are shown in figure 25(a) for a range of values z/dE. Even though these 
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FIGURE 22. u1 spectra spanning the whole turbulent region scaled with ' inner-flow '-scaling 
coordinates at six Reynolds numbers for varying values of z/dE. (a) Re = 200000, U, = 1.188 m/s; 
(b )  175000, 1.041; (c) 150000, 0.920; ( d )  125000, 0.777; (e) 100000, 0.635; (f) 75000, 0.487. 

calculations are applicable only to flow over a smooth flat surface as mentioned 
earlier, they show a distinct resemblance to the experimental pipe data shown in 
figure 22. It is remarkable how small a value of z/d is required before a substantial 
length of inverse-power-law region is apparent in the predicted u1 spectra. This also 
seems to be so for the experimental spectra. 
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FIGURE 23. u3 spectra spanning the whole turbulent region scaled with 'inner-flow '-scaling 
coordinates at six Reynolds numbers for varying values of z/AE. Re and U, values as for 
figure 22. 

Let us now return to figure 22. At  the two highest Reynolds numbers, figure 22 (a,  b ) ,  
the data at high k , z  collapse to  an inertial subrange. As the Reynolds number 
of the flow is decreased, the effect of viscosity becomes more important in this 
high-wavenumber region and the spectra peel off from the inertial subrange (( -5)- 
power-law region) a t  decreasing values of k, z as z / A ,  increases for a fixed Reynolds 
number. This -5-power-law region evolves into a -%-power-law 'envelope ' a t  the 
lower Reynolds numbers. 
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(ii) u3 spectra. The corresponding u3 spectra are presented in figures 23 (a-f ). A t  
high k , z  the data behave in a manner similar to the corresponding part of the u, 
spectra. It can be seen that, for z sufficiently large, the spatial-resolution limit of the 
X-wires in the Kolmogoroff region is no longer a problem, since the dissipation e is 
small and so 7 is large. Figure 24(b) is a superposition of the data shown in 
figure 23(a-f) and i t  appears that (35) is upheld for the energy-containing u3 
motions. 

Figure 25(b) shows the u3 spectra computed using the h-vortex model for various 
values of z/d,. These computed spectra show that, for z / A ,  sufficiently small, that 
part of the spectrum due to the coherent attached eddies is universal for all 
wavenumbers, as was shown in earlier sections. 

A comparison of the computed u1 and u3 spectra with the corresponding experi- 
mental data in figure 24 (a ,  b )  give encouraging support for the existence of a range 
of scales of geometrically similar hierarchies, consisting of coherent attached eddies, 
as was proposed by PC for wall-shear flow. 

4.3. Broadband turbulence results 
4.3.1. Turbulence results for u, 

Distributions of $/q measured in the fully turbulent region are shown in 
figure 26 for various values of A ,  U7/v .  Also shown are the predicted distributions 
of q/q using (14) for the highest and lowest experimental values of A ,  U7/v .  
These predictions are applicable only in the turbulent wall region and the values of 
A,, B,  and C have been estimated from the experimental spectra to be 0.90,2.67 and 
6.06 respectively. In the turbulent wall region there is a systematic variation of the 
data with A ,  U7/v  at a fixed z / A ,  that is significantly greater than the predicted 
variation. This variation of the data extends beyond the turbulent wall region and 
still exists, though to a lesser extent, at the pipe centreline. The authors conjecture 
that this variation may be due to the distortion of the geometry of the coherent 
attached eddies in the smallest hierarchy by the circular boundary condition of the 
pipe. We imagine that this distortion is transmitted to the eddies in the larger 
hierarchies, which are formed in stages from the smallest hierarchy by a vortex-pairing 
process. The ‘degree ’ of distortion will depend upon the ratio of the smallest hierarchy 
scale (which scales with v /U7)  to the radius of curvature of the pipe. This ratio is 
proportional to A ,  U J v ,  the Karman number. In  the limit as A ,  U7/v+cu,  this 
influence should vanish and the Townsend Reynolds-number-similarity hypothesis 
should be upheld. This lack of Reynolds-number similarity, which is apparent even 
in the largest-scale eddies, is difficult to see in the experimental spectra because of 
the complicating effect of the spread in convection velocity of the eddy scales 
discussed earlier. Perry & Abell (1977) also observed a lack of Reynolds-number 
similarity even in the large scale motions and attributed this to an insufficient 
flow-development length in their pipe. In the present study the development length 
was approximately five times larger and the Reynolds-number effect is still present. 

4.3.2. Turbulence results for u3 
measured in the fully turbulent region 

for various values of A ,  U7/v.  According to the analysis in $2, the distribution in the 
turbulent wall region should be given by (16). However, the effect of the viscous cutoff 
given by the second term in (16) is masked by an even stronger cutoff, namely the 
spatial-resolution limit of the X-wires, as was confirmed by the u3 spectra measured 

Figure 27 shows the distributions of 
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FIQURE 24. (a) A superposition of some of the u1 spectral data shown in figure 22 (a-f ). ( b )  A 
superposition of the us spectral data shown in figure 23a-f ). 

in the turbulent wall region (see figure 20). There is no systematic variation of these 
results with A ,  UJv .  It was conjectured that the high-wavenumber cutoff of the u3 
spectra was controlled by the scale of the X-wires. This means that the broadband 
data should collapse with 'outer-flow ' scaling, since Z/AE was held approximately 
constant. 
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FIGURE 25. Spectra computed using the A-vortex model for varying values of %/AE scaled 
with 'inner-flow '-scaling coordinates. (a)  u1 spectra. (a) u3 spectra. 

The fact that the data collapse to a region of constant G/q in the turbulent wall 
region is fortuitous and does not necessarily confirm the asymptotic prediction given 
by (16) and by (29c). Figure 28 shows the results of a crude simulation which used 
the eddy-intensity function I&) shown in figure 15 (b) and the weighting function 
used earlier for pipes. The low cutoff A, shown in figure 15(b) was replaced by 
A, = In (E/z) to simulate the spatial-resolution limit of the probe. Here, the value of 
A, was allowed to be greater than zero and hence had an effect on the integral. For 
1 = 2.00 mm, a flat region is predicted for values of z/AE comparable with those of 
the data shown in figure 27 for the turbulent wall region. 
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5. Conclusions 
From their analysis and measurements, the authors propose the following picture 

of wall turbulence. Attached coherent eddies are formed from the viscous-sublayer 
material and have a lengthscale corresponding to the Kline scaling and a velocity 
scale equal to the wall-shear velocity. They stretch and grow with a fixed orientation 
relative to the wall and are said to belong to the ‘first hierarchy’ of eddy scales. They 
either die by viscous diffusion and vorticity cancellation or else pair or merge to 
produce eddies of a larger lengthscale, and these eddies are said to belong to the 
‘second hierarchy ’. This process repeats itself, giving a range of scales of geometrically 
similar hierarchies. The p.d.f. of hierarchy lengthscales is assumed to be of inverse- 
power-law form and all hierarchies have the same characteristic velocity scale. These 
two assumptions lead to the logarithmic law of the wall, a region of constant Reynolds 
shear stress and an inverse-power-law spectral region for the fluctuating velocity 
components parallel to the wall in the turbulent wall region. These attached eddies 
are responsible for the mean vorticity, Reynolds shear stress and most of the 
energy-containing motions. It is conjectured that they do not contribute to the 
turbulent energy dissipation, except perhaps for the two smallest hierarchies. In 
$4.2.1 spectral data were presented which showed support for the above picture of 
wall turbulence and for the existence of a Kolmogoroff spectral region with an inertial 
subrange. It has been shown by Perry & Chong that attached eddies alone cannot 
explain the existence of a Kolmogoroff region. Here, we propose that the attached 
eddies are surrounded by detached isotropic fine-scale eddies which are responsible 
for a Kolmogoroff spectral region and for most of the turbulent energy dissipation. 
The authors suggest that these eddies originate from the debris of dead attached-eddy 
material which has been convected away from the wall and stretched and distorted 
by the larger-scale attached eddies. From this model of wall turbulence it appears 
that there is an energy flow to low wavenumber, due to eddy pairing, and an energy 
flow to high wavenumber in the Kolmogoroff region. No physical model, such as a 
cascade process, has been developed here and the existence of an inertial subrange 
has been explained only by the conventional dimensional-analysis argument. 

The dimensional-analysis approach of Perry & Abell (1977) to wall turbulence has 
been extended to include all three components of velocity and the analytical 
deductions are consistent with the detailed physical model developed here, which was 
based on Townsend’s (1976) attached-eddy hypothesis and the model of Perry & 
Chong (1982). The hypothesis of Townsend and the model of Perry & Chong 
were only applicable in the turbulent wall region and have been extended here to 
include the ‘wake ’ region. This involved modifying the inverse-power-law p.d.f. 
proposed by Perry & Chong so that the model would give a mean-flow-velocity 
distribution that follows the Hama (1954) velocity-defect law and the low-wavenumber 
behaviour seen in experimental spectra of velocity components parallel to the wall 
(streamwise and lateral) measured in the turbulent wall region. This required a 
higher eddy population for the large-scale eddies and the type of modification to the 
hierarchy p.d.f. needed depends on the type of flow being considered (i.e. boundary- 
layer, pipe or duct flow). 

Various eddy shapes and p.d.f.’s have been chosen in an attempt to correlate the 
analysis with the experimental data. No definitive eddy shape or p.d.f. has emerged 
and their exact form is still uncertain. Nevertheless, they lead to all the correct 
analytical expressions for the mean flow and spectra. Thus a link exists between the 
mean-flow distribution in the Coles ‘wake ’ region and spectra of velocity fluctuations 
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parallel to the wall measured in the turbulent wall region. The broadband turbulence- 
intensity measurements are also consistent with the analysis but are less definitive 
in establishing the detailed structure of wall turbulence. 

The link between the turbulence structure in the turbulent wall region and the 
outer-flow ‘wake’ region might possibly lead to a closure model in the prediction of 
a turbulent boundary layer in an adverse pressure gradient. Assuming that the 
hierarchy spectral function is unaffected by the presence of a pressure gradient, then 
a link exists between the Reynolds-shear-stress profile and the mean-velocity profile. 
The link is the p.d.f. of hierarchy lengthscales, which when coupled with the mean-flow 
momentum equation (Reynolds boundary-layer equation) might form the basis of 
a prediction scheme. 

The authors wish to acknowledge the financial assistance of the Australian 
Research Grants Scheme. 
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